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ABSTRACT 

This paper proposes an approach to computer assisted spoken 
English learning for Mandarin Chinese speaking people in 
Taiwan. Various studies have suggested the importance of 
acoustic models for pronunciation assessment. For English and 
Chinese people, their mother tongues are different; therefore 
the corresponding spoken English, as well as their acoustic 
models, are also different due to subtle difference in 
pronunciation. The aim of this work is to have robust acoustic 
models and better phoneme segmentation in the recognition 
phase of the assessment. The proposed approach improves the 
speech recognition rate, leading to better reliability of HMM 
log-probability and the higher accuracy of phoneme 
segmentation. These two factors, in turn, contribute to the 
success of our pronunciation assessment system, as 
demonstrated in the experimental results. 

1. INTRODUCTION 

With the fast-growing computing power of personal 
computers and the advances in speech processing and 
recognition technologies, computer assisted language learning 
(CALL) has now become a useful tool to automatically assess 
a person's pronunciation via computer software, especially for 
the second language (L2) learning. With the integration of 
automatic speech recognition (ASR) technology, a computer- 
assisted pronunciation training (CAPT) system can even 
provide the feedback to the student and successful applications 
have been reported [6]. In general, a CAF'T system requires 
the computer to evaluate the pronunciation quality using 
various speech features and derives a scoring function 
imitating human experts. 

For text-dependent pronunciation assessment, we use 
four speech features, including magnitude, pitch contour, 
rhythm, and log-probability of Hidden Markov Model (HMM) 
[9]. A nonlinear regression method is also applied on the 
speech features to derive a parametric scoring function [4]. In 
particular, for the difference of pronunciation for native 
speaker and L2 learner, the design of acoustic model and the 
phoneme segmentation approach has been investigated and 
satisfied performance is achieved. 

In this work, we divide the pronunciation assessment into 
three parts: 

1. Preprocess phase: acoustic model training 
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2. Recognize phase: phonemes segmentation and speech 

3. Scoring phase: score tuning based on parametric 

The four speech features are evaluated based on the unit 
of phonemes, while the segments are isolated via forced 
alignment of Viterbi decoding. We then combine the score of 
feature-level, phone-level and word-level into a final score via 
a parametric scoring function that can be tuned to approximate 
the scores from human experts. The scoring function can be 
implemented either as a simple linear function or as an 
advanced nonlinear model such as a neural network. In this 
study, we adopt a nonlinear scoring function optimized by 
downhill simplex method for pronunciation assessment. The 
experimental results demonstrate the feasibility of the 
proposed approach. 

The rest of this paper is organized as follows. Section 2 
gives a quick review of related previous work on automatic 
pronunciation assessment. Section 3 explains the speech- 
related techniques used in our approach, including the 
adaptation of acoustic model and phoneme segmentation. 
Section 4 demonstrates the experimental results. Section 5 
gives concluding remarks. 

features extraction. 

nonlinear regression 

2. RELATED WORK 

Recently, L2 learning has become a very popular research 
topic [6]. Catia et al defines the speech features for Dutch, 
including time segment duration, rate of speech, and log- 
probability of HMM [I]. For French, Franco et al combines 
several kinds of machine scores with linear/nonlinear 
regression and statistic method [2]. For tonal language, Chen 
et al propose a CAPT for Mandarin Chinese based on speech 
recognition of HMM and tone classification of Gaussian 
Mixture Model (GMM) [4]. Studies also show that, for L2 
learning, the ASR system trained via native speaker often has 
lower recognition rate for non-native speaker. Several 
approaches have been addressed to enhance the ASR 
performance [ 5 ] .  However, for Chinese people, the acoustic 
model of spoken English differs a lot from native speakers. 
Therefore, in the pronunciation assessment, properly speech 
processing and suitable acoustic models for target learner are 
essential. The proposed system considers this specific problem 
and tries to create a comprehensive English CAF'T for Chinese 
people. Related research on spoken English learning for 
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Chinese speaking people is seldom reported in the literature 
previously. 

3. THE PROPOSED APPROACH 

Generally speaking, the phone-level acoustic model is an 
appropriate unit for acoustic model training and pronunciation 
assessment. Section 3.1 describes how the phone models are 
trained and Section 3.2 introduces the phoneme segmentation 
algorithm used in our system. Section 3.3 explains the 
extraction of speech features for each segment. Finally, 
Section 3.4 gives the scoring function based on nonlinear 
regression. 

3.1. Acoustic Model Training 

To train a phone-level acoustic model, a machine-readable 
dictionary is needed to translate the word into phonemic units. 
In TIMIT, there are 60 phones in its dictionary. However, for 
Chinese, some phones are not easily differentiated and are 
usually mis-pronounced in a similar way. Therefore, in this 
work, we use the corpus of TIMIT but the dictionary of CMU 
[7]..The phone set conversion from the TIMIT to CMU is 
listed in Table 1 and smaller 40 phones of CMU dictionary are 
derived. Not only the acoustic models are more consistent, a 
smaller phone set also increases the robustness of model 
training when the training data is not abundant. 

Action Original phones and new phones 

Substitute 

Split 

Phoneme is the basic unit in the English pronunciation. For a 
test utterance, the phoneme segmentation is accomplished by 
forced alignment of Viterbi decoding. Traditionally, a SP 
model is inserted between words and the short inter-silence 
can be aligned into SP model. However, for utterances from 
non-native speakers, this approach does not perform 
satisfactorily. In particular, for a Chinese who is .learning 
English, an unfamiliar vocabulary usually delays the speaking 
rate and causes longer silent duration between words. 
Traditionally, the gap between words is inserted with SP, but 
this action could cause problems for un-fluent utterance from 
non-native speakers, such as the waveform shown in Figure 1,  

H#+SIL,’HV-HH, IX-IH, NX-N, Q-T, 
ux-uw 
ENG-IH NG, EL-AH L, EM-AH M, 
EN-AH N 

/I .I; I . .  

Figure I .  The forced alignment of the sentence “Then we’d 
really have some place to go” uttered by a Chinese. The top 
plot is aligned with a SP (short pause) model between words; 
and the bottom one is aligned with a silence model (Sil) 
hetween words. The prefix and suffix models of bath cases are 
default to be Sil. 

Basically the silence model (Sil) is a special kind of SP 
model with longer duration. Therefore, in Figure 1 the 
utterance can be segmented more correctly when all the gaps 
between words are filled with Sil. Note that the use of Si1 
model maybe aligned with longer duration that it actually is, 
especially for a fluent utterance. To solve this problem, a 
procedure called ‘Dynamic Insertion’ is suggested here. 
Assume an utterance has been forced aligned twice, one is 
with SP between all words, and the other is with Sil. The 
alignment results are called fup and /us,, , respectively. A 
better insertion sequence for alignment can be determined by 
the next equation: 
insert(i) = argmax(prob(/o,(i)),prob(/u,(i)) 

i is the index of the gap, prob is the function of time- 
normalized log probability in the i-th gap after forced 
alignment. For the case of Figure 1, a better insertion sequence 
may be like ‘Si1 SP  Si1 SP Si1 Si1 Si1 Sil’, but not all ‘Sil’ or all 

“,add 
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'SP'. The dynamic insertion can he applied not only to the 
ohoneme segmentation. hut also to the bootstraD orocedure of 

I 

''Ore &=, = wi ' ''Ore Pa, - ,=, . .  
acoustic model training, which may lead to a better 
initialization of HMM training [SI. The experimental result 
will be shown in Section 4. 

w,, w?, w3, w, represent the weighting of four speech features 
respectively and will be determined later. 

3.4.3 Word-level scoring 
Also, define the weighting of j-th phoneme as a function of 
time duration in a word. The score of k-th word is defined as: 

scOrewod' = 5 len(word) 

3.3. Speech Features Extraction . . 

Like in prevous work [9], four speech features are used in our 

contour, rhythm and log-probability. Due to the differences in 
.score,, system, including magnitude (intensity or volume), pitch W p b ,  ) 

length, volume or pitchlevel, interpolation and linear shifting 
are applied here to normalize some of the features, as shown in 
Table 2. 

N is the number of phoneme in a word, leno is a function of 
the time duration for each phoneme. 

I Speech Feature I Normalization I Distance Measurement I 
Euclidean Distance Interpolation, 

Linear Shifting Magnitude 

Interpolation, 
Linear Shifting Euclidean Distance Pitch Contour 

Rhythm I None I Euclidean Distance 
Log-Probability I None 
Table 2. The normalization method of each speech feature. 

I Ranking Function 

Instead of using the absolute value of log-probahility 
directly, we define a ranking function and use a relative 
measure obtained from each phonemic segment [4]. In other 
words, we align each phonemic segment against all 40 phone 
models to obtain 40 log-probabilities. After sorting these 
probabilities based on descending order, the position of the 
correct syllable is then used as distance. This kind of distance 
measure for log-probability is commonly used in the research 
of utterance verification [IO]. 

3.4. Score tuning based on parametric nonlinear regression 

After measuring the distance of four features, the utterance is 
scored in the feature-level, phoneme-tevel and word-level. 
Finally the score is tuned by a parametric scoring function. 

3.4. I Feature-level scoring 
We define the score of i-th feature as the function of distance: 

, for i  = I - 4 100 
1 +a, .(distance.)', 

score.,,, = 
. .  

distance, is the distance of i-th speech feature. 
Thescore,,will range from 0 to 100 and is parameterized by 

a, and b,. In this part there are totally eight free parameters to 
he determined by nonlinear regression method later. 

3.4.4 Paranietric scoringfunction 
Finally, define the weighting of k-th word as a function of time 
duration in a sentence. The overall score is defined as: 

IY len(word,) 
score,,, = .score,,, Z ien(sentence) 
W is the number of word in a sentence, leno is a function of 
the time duration for each word. The overall scoring function 
is composed of the feature-level scoring, phoneme-level 
scoring and word-level scoring functions. Apparently this 
function is parameterized with several parameters, including 
ai, b,, at, bt, ah b3, a,, b,, wI. w2, w3, w,. To tune these 
parameters to approximate the scores from human experts, we 
employ the downhill simplex method to find the optimal 
values of these parameters [3]. The experimental results are 
covered in the next section. 

4. EXPERIMENTAL RESULTS 

TIMIT is a corpus recorded by 630 persons, 438 males and 
192 females, IO sentences for each person and totally 6300 
sentences. 4620 sentences are designed to he training data and 
1680 files are test data. To adapt the acoustic model for 
Chinese, we collected the C-TIMIT corpus which is recorded 
by 33 persons, including 23 males and IO females; 213 
sentences are uttered by each person and totally 7029 
sentences are recorded. We take the 4684 sentences as training 
data and 2345 as test data according to the original category of 
TIMIT. A tree net consisted of all vocuhularies in TIMIT is 
also applied in speech recognition. 

Each spectral feature vector contains 39 dimensions, 
including 12 MFCC (Mel-frequency cepstral coefficients) and 
1 log energy, and their delta and double delta values. For 
parameters of HMM, we use right-context dependent hi-phone 
model, three states in each phone model, and four Gaussian 
mixtures in each state. 

For simplicity of notation, the HMM trained hy TIMIT is 
denoted as EHm; the testing sentences of TIMIT is denoted as 
Enr; the HMM trained by both the training sentences of C- 

sentences of C-TIMIT is CnT. The dynamic insertion 

3.4.2 Phoneme-level scoring 
Define the weighting wifor i-th speech feature and combine all 

equation: 
feature-level Scores as the score o f j - th  phoneme in the and is denoted as ECHMM; and the testing 
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approach i s  performed on the four combinations above and the 
result is  shown in Table 3. 

Insertse . EHMM ECHm ECHMM 
All Si1 59.08% 87.30% 97.06% 93.55% 
All SP 59.52% 87.74% 97.53% 94.04Yo 

namic 60.13% 88.37% 98.02% 94.44% 
Table 3. The tree-net based LVCSR words recognition rate of 
different insertion sequence. 

In Table 3, when compared with the column CTSTiEHMM. 
the enhancement in column CTsT/ECHMM is obvious, indicating 
the success of the use of C-TIMIT. The recognition rate falls a 
little down in E&ECHMM but still higher than CTSTECHMM, 
which implies that the Chinese always try to learn the 
characteristics of native English but the pronunciation varies 
more. The dynamic insertion method also works pretty well 
and consistently in every case. 

To construct the overall scoring function, we use a dataset 
containing 200 utterances from 20 speakers, 10 males and IO 
females, each with various levels of proficiency in English. 
Each speaker is asked to utter 10 sentences chosen from the 
TIMIT. These utterances are evaluated by a human expert who 
gives a score between 1 and 100 to each utterance, according 
to the ‘fluency’ subjectively determined by the human expert. 
We then used downhill simplex method to fine-tune the 
parameters air bl, a2, b2, aj, b,, a,, b,, wI. w2, w ,  and w,. The 
resulting value of wI is 0.07, w 2  is 0.22, wj is 0.17 and w, is 
0.54, indicating that the contents and the pitch contour of the 
utterance are more important than the other two features in the 
utterance. 

To verify the performance of the system, we evaluated an 
outside test in which another set of 200 utterances recorded 
from IO subjects and given scores by the same human expert. 
According to the scores, each sentence is assigned a categoly 
out of three candidates: good (between 80 and IOO), medium 
(between 60 and SO), and bad (below 60). The following table 
lists the test result in the form of a confusion matrix, in which 
each row corresponds to a category assigned by our system, 
and each column corresponds to a category assigned by the 
human expert. 

Unit: Number of sentences 
Goodl Medium 1 Bad 1 Good I -5; 1 ;2 1 1 Medium 

Bad 10 20 28 
Table 4 Confusion matrix in terms of three categories. 

In table 4, it is obvious that our system can match the 
categories assigned by a human expert in a satisfactory manner. 
The overall recognition rate in terms of these three categories 
is (63+27+28)/200 = 59%. 

5. CONCLUSIONS 

In this paper, we have proposed an English CAPT system for 
Chinese people in Taiwan. The improvement of using C- 
TIMIT (an English speech corpus recorded by students in 
Taiwan) for better recognition rates is obvious, especially for 
the combination of CTSTiECHMM. To deal with the 
characteristics of spoken English from Chinese in Taiwan, we  
have defined a suitable phone set for better results in forced 
alignment. A ranking-based distance measurement for log- 
probability is also applied in the feature-level scoring. 
Experiments demonstrate the feasibility of the proposed 
approach over conventional ones. 
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